Non-invasive prenatal screening for aneuploidies and microdeletions

Paul Kezmarsky, MS, CGC Genetic Counselor

Prenatal Screening

1960s	1980s	1988	1996	1997	2011 – Present	
Maternal Age	MSAFP	Triple Screen	Quad Screen	FTS NT/Serum	NIPT Quantitative	NIPT SNP
27%	36%	60–74%	70–81%	80–95%	66–>99%	92->99%
All	T21	T21 T18	T21 T18	T21 T18 T13	T21 T18 T13 SCA	T21 T18 T13 SCA Triploidy Microdeletions

Evolution of NIPT

Cell-free DNA (cfDNA)

Conditions screened for by NIPT

- Trisomy 21, 18, 13
- Monosomy X
- 22q11.2 deletion syndrome
- Additional microdeletions
- Fetal sex
- Sex chromosome trisomies

- Triploidy
- Vanished twin

Comparing Screening Options

	Maternal Serum Screening ^{1–6}	SNP-based NIPT ^{7–8}
Gestational age	~11–22 wks	9+ wks
Nuchal Translucency	FTS	No
Open Neural Tube Defects	AFP	No
T21 Positive Predictive Value	3.4%	91%
False positive rate	5%	<1%

 $^1\text{Nicolaides K H}$ et al. Ultrasound Obstet Gynecol. 2005; 25(3)221-6.

 ²Wapner R et al. N Engl J Med. 2003; 349 (15); 1405-13.
 ³Malone FD et al. N Eng J Med. 2005; 353(19): 2001-11.
 ⁴PerkinElmer Labs / NTD 2013, http://ntdlabs.com/maternalmarker-testing/. ⁶Quest Diagnostics 2014, www.questdiagnostics.com
 ⁶Norton M et al. NEJM. 2015 Apr 23;372(17):1589-97
 ⁷Pergament et al. Obstet Gynecol. 2014 Aug;124(2 Pt 1):210-8
 ⁸Dar P et al. Am J Obstet Gynecol 2014 Nov;211(5):527

Trisomy 21 Positive Predictive Value

265 women will undergo invasive testing to discover **9** true positives.¹

1Norton et al, N Engl J Med 2015. 2Dar et al. Am J Obstet Gynecol 2014 Nov;211(5):527

NIPT Methodologies

- Counting (quantitative)
 - Massively Parallel Shotgun Sequencing
 - Targeted Sequencing
- SNP (qualitative)
 - Targeted Sequencing

Counting

Counting

- A DNA sequence variation occurring when a single base pair is changed
- Normal genetic changes that occur in every person

- All analyzed SNPs are assumed to be biallelic
- For simplicity, we designate this as A and B

 Since chromosomes come in pairs, we would inherit two SNPs at the same location, and could be A/A, A/B, or B/B for each SNP

 Baby inherits one SNP from mom and one from dad. In this example baby inherits A from mom and B from dad. Baby is A/B for this SNP.

SNP-based NIPT analyzes >13,000 SNPs

- Analysis is based on allele ratios at SNPs (genotypes)
- Plasma allele ratios reflect mixture of maternal and fetal genotypes
- Fetal genotypes reflect ploidy state

Each dot is one SNP and is the **sum** of both the maternal and fetal contribution

Breaking down a SNP profile

DNA "fingerprints"

- SNP-based NIPT is the only NIPT on the market that distinguishes between maternal and fetal DNA.
- SNP-based NIPT can identify different DNA "fingerprints" in a maternal blood sample, such as those from a vanishing twin.

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Fetal Fraction (FF) Matters

"...the measurement of fetal cfDNA is a basic quality metric required to ensure reliable interpretation of test results."¹

- Average fetal fraction is 10–12%*
- Varies by gestational age, maternal weight, placental and pregnancy factors
- SNP-based NIPT cutoff: 2.8%

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

• Fetal fraction

- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Maternal X Mosaicism

Without differentiating maternal and fetal DNA, counting methods may incorrectly report a fetal sex chromosome abnormality.

Clinical	NIPT findings	Total
NIPT follow-up	Abnormal NIPT for SCA, n	187
	Normal maternal karyotype, n	171
	Abnormal maternal karyotype, n	16
	Maternal mosaicism rate	8.56%

Russell LM, et al. X chromosome loss and ageing. Cytogenet Genome ,116:181-185.

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Case Example: Vanishing twin

- 35 year-old G2P1
- History of "vanishing twin" at 8 weeks gestation
- SNP-based NIPT at 10 weeks: "Results consistent with possible triploid or vanishing twin"
- Counting NIPT at 13 weeks: "Normal male fetus"
- Ultrasound at 17 weeks: female fetus
- Delivery: normal female, 46 XX chromosomes

Su B et al. Discordant NIPT and ultrasound results from vanishing twin pregnancy . Contemporary Ob/GYN April 2015.

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Error Rate in Sex Determination

In validation studies, as many as 1 in 75 cases can have gender discrepancy when using counting methodologies.

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy

Triploidy

The all			Particle of the second	Sound of the second sec
13			K 85,8	18 5 8
20 8 19	8 🎘 🖏	21	8 D	S

Only SNP-based NIPT Can Detect Triploidy

- 1 in 1000 pregnancies at 10 weeks¹
- Risk for partial molar pregnancy
- Provides risk assessment for couples with prior pregnancy with triploidy
- Counting method cannot recognize extra copy of all chromosomes

1Snijders, et al. Fetal Diagn Ther 1995; 10:357-9.
2Berkowitz, RS and Goldstein, DP, Cancer 1995; 76: 2079–2085.
3Soper, J. Obstet Gynecol 2006; 108:176–87
4Chromosome Abnormalities and Genetic Counseling, Gardner and Sutherland, 2004.

Clinical Advantages of SNP-based NIPT Uniquely differentiates between maternal and fetal DNA

- Fetal fraction
- Maternal contribution
- Vanishing twins
- Fetal sex accuracy
- Triploidy
- Microdeletions

Screening for microdeletions

- Microdeletions vary in size
- Karyotype can usually only visually detect >7–10 MB
- Clinical outcome depends on size & genes involved

Incidence out of 100,000 Live Births

Rethink screening

Microdeletions are more common than Down syndrome in younger women

1Snijders, et al. Ultrasound Obstet Gynecol 1999;13:167–170. 2Combined prevalence using higher end of published ranges from Gross et al. Prenatal Diagnosis 2011; 39, 259-266; and www.genetests.org. Total prevalence may range from 1/1071 - 1/2206.

22q11.2 Deletion Syndrome

¹International 22q11.2 Foundation – Handbook and www.22q.org ²www.genereviews.org ³Wapper R et al. NEJM 2012; 367:(23) 2175-2184. ⁴Grati F et al. Prenat Diag 2015. In press.

Early Intervention Matters

- Deliver baby at tertiary care center
- Delay in administering live vaccines
- Monitor calcium levels
- Check palate for clefting and velopharyngeal insufficiency

SNP-based NIPT Advantage

- Superior aneuploidy screening compared to maternal serum screening
- Differentiates between maternal and fetal/placental DNA
- Detects triploidy and vanishing twin
- Screening for 22q and other microdeletions
- Accuracy in fetal sex determination

