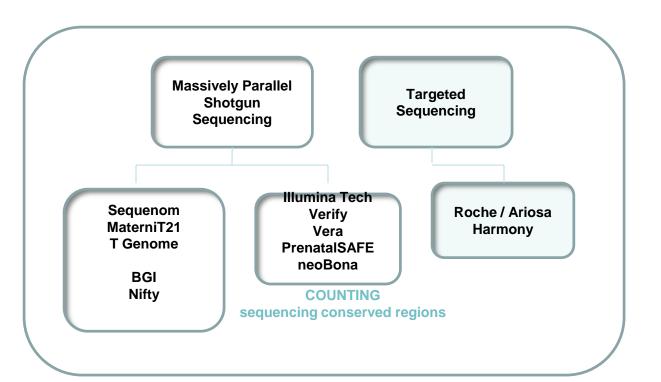
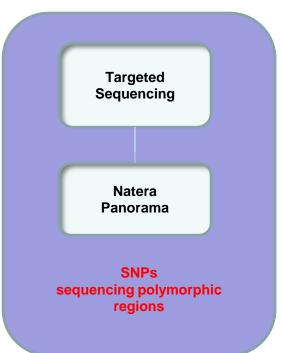


Genetica Prenatale in ostetricia: Stato dell'arte

Prof . Antonio Farina


DIMEC Divisione di Medicina Prenatale


Alma Mater Studiorum

Bologna

Le classiche NIPT Methodologies: SNPs vs. Counting

Attuali differenze fra Counting e SNPs

- Ovodonazioni: COUNTING
- Vanishing Twin : COUNTING
- Genome Wide (7-10 Mb): COUNTING
- Pz. Politrasfuse: COUNTING
- Triploidia: SNPs
- Zigosità: SNPs
- S. di Di George e pannello microdelezioni: SNPs vs. DANSR, TCEA, Counting
- Malattie mendeliane dominanti de novo e recessive ??

Items for today

- Test sequenziale «reflex» Test combinato + DNA fetale
- La integrazione NT e NIPT
- Confronto delle performance dello screening della Sindrome di DiGeorge
- I pannelli per le malattie mendeliane

Items for today

Test sequenziale «reflex» Test combinato + DNA fetale

- La integrazione NT e NIPT
- Confronto delle performance dello screening della Sindrome di DiGeorge
- I pannelli per le malattie mendeliane

Test sequenziali vs. Down

- Il primo test deve essere molto sensibile
- Il secondo test deve essere molto specifico
- Il test combinato è meno specifico e meno sensibile del DNA fetale
- La sensibilità del test combinato è tarata su 5% circa di FPR (1:300)
- Per rendere il test combinato più sensibile il cut-off va spostato a livelli simili o superiori a quelli della incidenza generale (1:700)

Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test

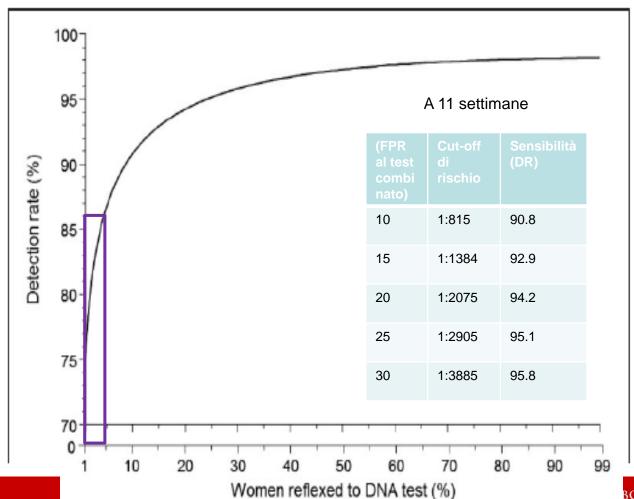
M. M. GIL*, R. REVELLO*, L. C. POON*, R. AKOLEKAR*† and K. H. NICOLAIDES*

Table 3 Distribution of risk from the combined test in 11 692 women with singleton pregnancy attending National Health Service hospitals, according to trisomic outcome

Risk cut-off	Trisomy 21 (n = 47)	Trisomy 18 (n = 24)	Trisomy 13 (n = 4)	Unaffected (n = 11 617)
≥ 1 in 10	30 (63.8)	19 (79.2)	4 (100)	62 (0.5)
≥ 1 in 20	36 (76.6)	20 (83.3)	4 (100)	101 (0.9)
≥ 1 in 50	38 (80.9)	21 (87.5)	4 (100)	208 (1.8)
$\geq 1 \text{ in } 100$	41 (87.2)	22 (91.7)	4 (100)	393 (3.4)
≥ 1 in 500	46 (97.9)	23 (95.8)	4 (100)	1351 (11.6)
≥ 1 in 1000	46 (97.9)	24 (100)	4 (100)	2181 (18.8)
≥ 1 in 1500	46 (97.9)	24 (100)	4 (100)	2870 (24.7)
≥ 1 in 2000	46 (97.9)	24 (100)	4 (100)	3429 (29.5)
≥ 1 in 2500	46 (97.9)	24 (100)	4 (100)	3938 (33.9)
≥ 1 in 3000	46 (97.9)	24 (100)	4 (100)	4453 (38.3)
≥ 1 in 3500	47 (100)	24 (100)	4 (100)	4899 (42.2)

Data are given as n (%).

^{*}Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK; †Department of Fetal Medicine, Medway Maritime Hospital, Gillingham, Kent, UK

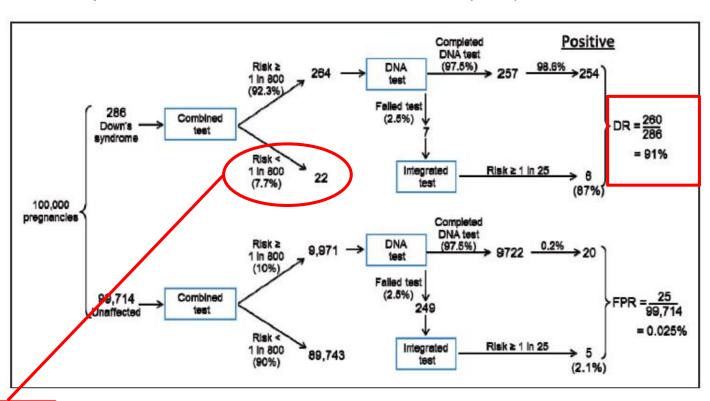


Performance of antenatal reflex DNA screening for Down's syndrome

J Med Screen
2015, Vol. 22(4) 168–174
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0969141315581005
msc.sagepub.com

\$SAGE

Nicholas J Wald and Jonathan P Bestwick


Performance of antenatal reflex DNA screening for Down's syndrome

J Med Screen
2015, Vol. 22(4) 168–174
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0969141315581005
msc.sagepub.com

\$SAGE

Nicholas J Wald and Jonathan P Bestwick

10% di FPR equivale a 11 settimane ad un cut-off di 1:800 circa (1:815) ed ad una DR del 92% circa

Calo al 91% della Sensibilità del DNA

Down persi

Performance of antenatal reflex DNA screening for Down's syndrome

Nicholas J Wald and Jonathan P Bestwick

J Med Screen
2015, Vol. 22(4) 168–174
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0969141315581005
msc.sagepub.com

A 11 settimane

Abbassando il cut-off del test combinato Si alzano i FP del DNA fetale

(FPR al test combi nato)	Cut-off di rischio	Sensibilità (DR)	FPR dopo DNA fetale	FPR da DNA fetale da solo
10	1:815	90.8	1:4000	≅1:500
15	1:1384	92.9	1:2857	≅1:500
20	1:2075	94.2	1:2173	≅1:500
25	1:2905	95.1	1:1785	≅1:500
30	1:3885	95.8	1:1538	≅1:500

Offidal journal of the American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE

Prenatal reflex DNA screening for trisomies 21, 18, and 13

Nicholas J. Wald, FRS, FRCP¹, Wayne J. Huttly, MSc¹, Jonathan P. Bestwick, MSc¹, Robert Old, PhD¹, Joan K. Morris, PhD¹, Ray Cheng, MPhil¹, Joe Aquilina, FRCOG², Elisabeth Peregrine, MRCOG³, Devender Roberts, MRCOG⁴ and Zarko Alfirevic, FRCOG⁴

Table 1 Characteristics of the 22,812 pregnancies screened

rable r characteristic or the ELJO	z pregnancies sereenea
Median age (years) at estimated date of delivery (IQR)	31 (28–35)
Median maternal weight (kg) (IQR)	64 (57-73)
Median gestational age (weeks + days) at blood sample (IQR)	12 + 5 (12 + 2-13 + 1)
Ethnicity	
Caucasian	11,939 (52%)
Black	1,858 (8.1%)
South Asian	6,484 (28.4%)
Oriental (East or South East Asian)	962 (4.2%)
Other	1,569 (6.9%)
Insulin-dependent diabetes	87 (0.4%)
In vitro fertilization	791 (3.5%)
Twins	381 (1.7%)
Monochorionic	80 (21%)
Dichorionic	295 (77%)
Unknown chorionicity	6 (1.6%)
Smoker	1,222 (5.4%)
Trisomy 21 (prevalence)	73 (0.32%)
Trisomy 18 (prevalence)	25 (0.11%)
Trisomy 13 (prevalence)	8 (0.04%)
All affected (prevalence)	106 (0.46%)

IQR, interquartile range.

Prenatal reflex DNA screening for trisomies 21, 18, and 13

Nicholas J. Wald, FRS, FRCP¹, Wayne J. Huttly, MSc¹, Jonathan P. Bestwick, MSc¹, Robert Old, PhD¹, Joan K. Morris, PhD1, Ray Cheng, MPhil1, Joe Aquilina, FRCOG2, Elisabeth Peregrine, MRCOG3, Devender Roberts, MRCOG4 and Zarko Alfirevic, FRCOG4

Table 2 Performance of reflex DNA screening using a 1 in 800 combined test risk cutoff to select women for a DNA test compared with women only receiving the combined test using a 1 in 150 risk cutoff

Screening method	Aff		fected	ected		
	Trisomy	Positive/total	DR (95% CI)	Positive/total	FPR (95% CI)	OAPR
Reflex DNA screening	21	69/73	95% (87-98%)	4/22,706	0.02% (0.00-0.05%)	17:1
	18	24/25	96% (80-100%)	0/22,706	0.00% (0.00-0.02%)	> 24:1
	13	8/8	100% (63-100%)	0/22,706	0.00% (0.00-0.02%)	>8:1
	All	101/106	95% (89-98%)	4/22,706	0.02% (0.00-0.05%)	25:1
Combined test only	21	59/73	81% (70-89%)	532/22,706	2.34% (2.15-2.55%)	1:9
	18	20/25	80% (59-93%)	10/22,706	0.05% (0.02-0.08%)	1:2
	13	6/8	75% (35-97%)	55/22,706	0.24% (0.18-0.32%)	1:9
	All	86/106	81% (72-88%)	549/22,706	2.42% (2.22-2.62%)	1:6

CI, confidence interval; DR, detection rate; FPR, false-positive rate; OAPR, odds of being affected given a positive result. *Unaffected with any of trisomy 21, 18, or 13.

Test sequenziale : una ipotesi di riflessione

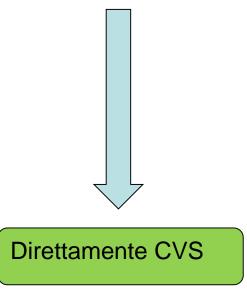
- La DR del test combinato può essere portata al 95% con un tasso di FP del 25-30% e pari ad un cut-off di 1:3500 circa
- In tal modo reclutando il 25-30% di tutta la popolazione a cui offrire il DNA fetale avremmo una DR del 95% ed un tasso di FR di 1:1500 circa

- Il test sequenziale riduce di circa il 75% le AC inutili ma perde il 5% dei feti affetti
- Il fallimento del test contribuisce a diagnosticare circa il 2% dei casi di Down

Items for today

- Test sequenziale «reflex» Test combinato + DNA fetale
- La integrazione NT e NIPT

- Confronto delle performance dello screening della Sindrome di DiGeorge
- I pannelli per le malattie mendeliane


Is nuchal translucency measurement useful when cell-free DNA testing is performed?

- <u>Lichtenbelt</u>: When NIPT for trisomies 13, 18, and 21 is offered to all women, NT measurement by itself has a limited added clinical value for the detection of fetal chromosomal anomalies.
- <u>O'Brien</u>: A positive NT ultrasound scan did not add to the cases of aneuploidy that were detected by cfDNA screening.
- <u>Langlois</u>: For women with a negative cfDNA screening result, NT measurement has limited clinical utility.

NT vs. cff-DNA vs. CVS

- NT non aggiunge nulla allo screening base col DNA fetale
 - Pur avendo scarsa specificità (50% circa) una NT aumentata (>95-99 centile)
 può essere utile ad identificare patologie rare cromosomiche, subcromosomiche e mendeliane

Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis

M. GRANDE*, F. A. R. JANSEN†, Y. J. BLUMENFELD‡, A. FISHER§, A. O. ODIBO¶, M. C. HAAK† and A. BORRELL*

*Department of Maternal-Fetal Medicine, Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Spain; †Leiden University Medical Center, Department of Obstetrics and Fetal Medicine, Leiden, The Netherlands; †Department Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, USA; §Elliot Health System, Manchester, NI ¶Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, University of South Florida, Tampa, FL, USA

Conclusion The use of genomic microarray provides a 5.0% incremental yield of detecting CNVs in fetuses with increased NT and normal karyotype. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

Anomalie più frequenti in NT>99° e/o 3.5 mm

- Più frequenti CNV:
- 22q.11.2 mdelez (s. di DiGeorge)
- 22q11.2 mduplicaz (iperespressione di TBX1)
- 16p11.2 mduplicaz
- 1p.36 delezione ———

NIPT DNA per microdelezioni

- Più frequente Mendeliana :
- S. Di Noonan

NIPT DNA per Malattie
Mendeliane

Article

Chromosomal Microarray Analysis versus Karyotyping in Fetuses with Increased Nuchal Translucency

Rita Cicatiello ^{1,†}, Piero Pignataro ^{1,†}, Antonella Izzo ¹, Nunzia Mollo ¹, Lucia Pezone ¹, Giuseppe Maria Maruotti ², Laura Sarno ², Gabriella Sglavo ², Anna Conti ^{1,*}, Rita Genesio ^{1,‡} and Lucio Nitsch ^{1,3,‡}

Table 2. Prenatal cases with chromosome anomalies not detectable by non-invasive prenatal testing (NIPT).

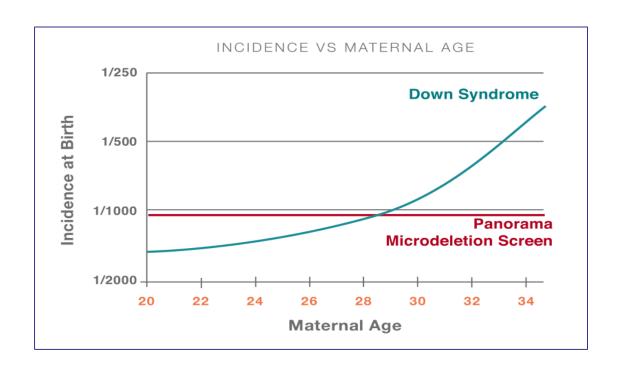
Chromosome Anomaly	Sample Type	Detectable by NIPT
46,XX.arr[GRCh37]16p11.2(29652999_30198600)x3 pat	AF	No
46,XY.arr[GRCh37]2p15(61529343_61564040)x1 mat,16p11.2(28833437_29046252)x3 dn	AF	No
46,XX.arr[GRCh37]22q11.2(19010936_20434800)x1 dn	CVS	No
46,XX.arr[GRCh37]1p36.23p36.33(453255_7284969)x1 dn	CVS	No
46,XX.arr[GRCh37]22q11.2(19110226_19854855)x1 dn	CVS	No
46,XY.arr[GRCh37]1q43(237335376_237418407)x1 dn	AF	No
46,XY.arr[GRCh37]1q21.1(145429097_146756493)x3 pat	AF	No
47,XX,+9	AF	No
47,XY,+mar.ish.der(9)(wcp9+)mat.arr[GRCh37](1-22)x2,(X,Y)x1	CVS	No
47,XY,+mar.ish der(22)(wcp22+,TUPLE1+).arr[GRCh37]22q11.1q11.21(17374086_20088001)x3 dn	CVS	No
47,XY,+mar .ish der(9)(wcp9+).arr[GRCh37](1-22)x2,X,Y)x1	CVS	No
$mos 47,XX_{,+}mar[8]/46,XX[8].ish i(12)(p10)(wcp12+)$	CVS	No
mos 46,XX,inv(5)(p14p15)[7]/46,XX[9].arr[GRCh37]8q22.2(100072320_100155410)3 pat 45,XY,der(18;22)(p117;q117).ish	CVS	No
der(18;22)(D18Z1+,D18S552;TUPLE1+,SHANK3+)dn.arr[GRCh37]6q16.1(95588523_95662060)x1 pat,18p11.32p11.21(146484_14117327)x1	AF	No
46,XX,add(8)(p23).ish dup(8)(p21?p23)(wcp8+)dn.arr[GRCh37]8p23.3p23.1(228758_6911631)x1,8p23.1p11.22(11858401_38964086)x3	AF	No
46,XX,der(10)t(10;12)(q26;q23).arr[GRCh37]10q26.13q26.3(123190101_135104747)x1,12q23.3q24.33 (106838149_132878426)x3	CVS	No
Short term culture: 46,XY/Long term culture: mos 45,X[4]/46,XY[12]	CVS	Not sure
mos 45,X[4]/46,XX[26]	CVS	Not sure
mos 45,X[3]/46,XX[22]	CVS	Not sure

AF: amniotic fluid; CVS: samples from chorionic villi.

SUMMARY

- Our data and modeling suggest >30,000
 abnormal CNVs are missed by NIPT and could be detected each year in the USA if diagnostic procedures and aCGH were the mainstream approach across the population.
- NIPT is a disruptive technology having disproportionate impact upon medical expenditures in pregnancy and creating serious cost effectiveness and public health issues that are just beginning to play out.

Prof Mark Evans



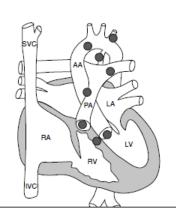
Items for today

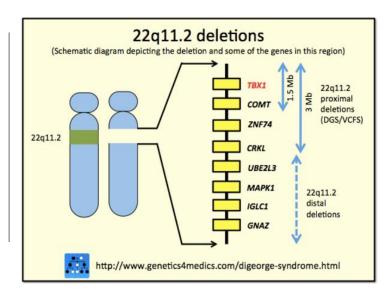
- Test sequenziale «reflex» Test combinato + DNA fetale
- La integrazione NT e NIPT
- Confronto delle performance dello screening della Sindrome di DiGeorge
- I pannelli per le malattie mendeliane

Microdelezioni

¹Snijders, et al. *Ultrasound Obstet Gynecol* 1999;13:167–170.

²Combined prevalence using higher end of published ranges from Gross et. al., *Prenatal Diagnosis 2011; 39, 259-266;* and <u>www.genetests.org</u>. Total prevalence may range from 1/1071 - 1/2206.





- Arco Aortico
- Arterie Polmonari
- Arterie Succlavie
- •Collaterali Aorto-polmonari
- Setto Infundibolare
- Valvola Polmonare

Condition	Sensitivity (95% CI)	Specificity (95% CI)	Positive Predictive Value	Negative Predictive Value
22q11.2 deletion syndrome ^{7,8,9}	95.7% (CI 85.5-99.5)	>99 (CI 98.6-99.9)	20%**	99.97-99.99%***
1p36 deletion syndrome ^{7,8}	>99% (CI 2.5-100)	>99% (CI 99.1-100)	7-17%***	99.98-99.99%***
Angelman syndrome ^{7,8}	95.5% (CI 77.2-99.9)	>99% (CI 99.1-100)	4%	>99.99%
Cri-du-chat syndrome ^{7,8}	>99% (CI 85.8-100)	>99% (CI 99.1-100)	2-5%***	>99.99%
Prader-Willi syndrome ^{7,8}	93.8% (CI 69.8-99.8)	>99% (CI 99.1-100)	5%	>99.99%

^{*} Ongoing clinical follow-up is performed to ensure the NPV does not fall below the quoted value but follow up is not obtained for all low risk calls.

For additional information, please visit: www.natera.com/panorama-test/test-specs

^{**} PPV for 22q11.2 deletion syndrome in published studies was 20% when no ultrasound anomalies were seen and was up to 100% when ultrasound anomalies were seen prior to testing.

^{***} Dependent upon fetal fraction, see Panorama Risk score on report for accurrate PPV/NPV for a specific patient.

SEQUENOM®

Sequenom Laboratories

3595 John Hopkins Court, San Diego, CA 92121 CLIA #: 05D2015356 CAP #: 7527138 Lab Director: Phillip Cacheris, MD, PhD Tel: 877.821.7266

FINAL REPORT

Performance Characteristics

Region (associated syndrome)	Size Range (Mb)*	Median Size (Mb)*	Reportable Fetal Fraction	Estimated Sensitivity**	Estimated Specificity
Genome-wide	NA	NA	≥ 4%	96% (61–> 99%)	> 99.9%
22q11.2 (DiGeorge)	0.8–3.6	2.6	≥ 4%	> 74% (17(94%)	> 99.9%
15q11.2 (Prader-Willi & Angelman)	1.2–15.8	5.1	≥ 4%	> 59% (16–74%)	> 99.9%
11q23 (Jacobsen)	1.3–15.7	9	≥ 4%	> 87% (57–> 99%)	> 99.9%
8q24.11-q24.13 (Langer-Giedion)	7.6–8.8	7.9	≥ 4%	> 97% (80–> 99%)	> 99.9%
5p15.3 (Cri du Chat)	1.5–17.8	6	≥ 4%	> 83% (48–96%)	> 99.9%
4p16.3 (Wolf-Hirschhorn)	1.1–17.3	4.2	≥ 4%	> 73% (37–91%)	> 99.9%
1p36 (1p36 deletion syndrome)	1.6–13.3	3.8	≥ 4%	> 51% (13–81%)	> 99.9%

^{**} Sensitivity estimated across the observed size distribution of each syndrome [per ISCA database nstd37] and across the range of fetal fractions

observed in routine clinical NIPT. Figures in parentheses indicate upper and lower estimates for sensitivity at the lowest reportable fetal fraction (4%)

and at fetal fraction ≥20%, respectively. Actual sensitivity can also be influenced by other factors such as the size of the event, total sequence counts, amplification bias, or sequence bias.

Screening for 22q11.2 deletion syndrome by two non-invasive prenatal testing methodologies: A case with discordant results

Liang-Ming Lo ^{a, b}, Chii-Shinn Shiau ^{a, b}, Kuang-Chao Chen ^{a, b}, S.W.S. Shaw ^{a, b, c, *}, Peter Benn ^d

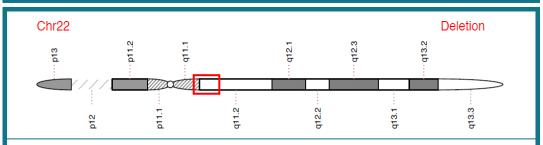
Conclusion: Currently available NIPT for 22q11.2DS use different technologies that are not equivalent. The genome-wide counting methodology has the potential to detect deletions outside the critical 22q11.2 A —D region but current data suggests it may have a lower sensitivity for deletions within the critical region.

^a Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan

^b College of Medicine, Chang Gung University, Taoyuan, Taiwan

^c Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK

^d Genetics and Genome Sciences, UCONN Health, 263 Farmington Avenue, E3050, Farmington, CT, USA



Test Result

Positive Loss of chromosome 22(q11.2) material

Laboratory Director's Comments

A loss of chromosome 22 material was observed. It is estimated to be 2.6 Mb in size and is suggestive of a deletion in the region 22q11.2, which is associated with DiGeorge syndrome. Genetic counseling and clinical correlation are recommended. Confirmatory testing is required if fetal confirmation and clinical interpretation of the suspected event are desired. Please refer to the "Performance" and "Limitations of the Test" sections of this laboratory report for additional information.

Description: An approximate 2.6 Mb loss of chromosome 22 material was observed, suggestive of a deletion in the region q11.2, associated with DiGeorge syndrome.

CONCLUSIONE

ALTO RISCHIO per delezione 22q11.2 (Sindrome di DiGeorge)

Si consiglia consulenza genetica. Si segnala che l'esame svolto è un test di screening, pertanto per una diagnosi definitiva è necessario eseguire test diagnostici con metodica microarray su villi coriali o liquido amniotico.

natera

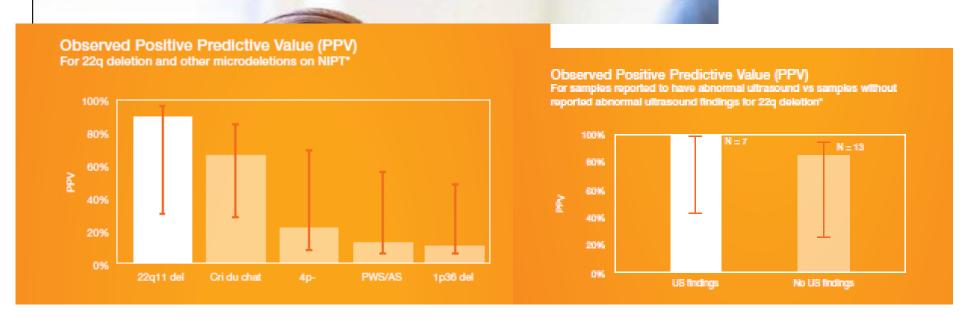
ESITO DEL TEST

Sesso del feto: Femmina Frazione fetale: 7,2 % Rischio Rischio Microdelezione testata 1 a priori^{2,4} Panorama³ Risultato 1/19 22q11.2 (DiGeorge) 1/2000 Alto rischio 1/12400 Basso rischio 1/5000 1p36 1/16600 1/12000 Basso rischio Angelman 1/57100 Cri-du-chat 1/20000 Basso rischio 1/13800 Prader-Willi 1/10000 Basso rischio

Screening della microdelezione 22q11.2 col test Harmony

Delezione 22q 11.2

	Sensibilità	Rischio di falso positivo
Interne alla regione tipica da 3Mb*	75%³-⁴	0.5% ³⁻⁴


^{*}Include anche le piccole microdelezioni atipiche localizzate internamente alla regione tipica da 3Mb

TEST NEGATIVO: il test non rileva una riduzione dei frammenti circolanti di questa regione. E' comunque utile ricordare che il test indaga il 95% delle microdelezioni che causano la sindrome 22q11 e pertanto rimane un rischio residuo, seppur estremamente ridotto, che il feto possa comunque avere la sindrome. Non è raccomandato modificare il percorso di sorveglianza ecografica e clinica di routine.

1.96 to 3.25 Mb

Verifi™ Plus Prenatal Test

An expanded NIPT panel for the additional insights you need

Manca la Sensibilità e i Falsi Positivi

Quante S. di DiGeorge ??????

Instructions For Use REF: LPU 015-S / LPU 015

DiGeorge II (10p14) Probe

Probe Information

DiGeorge syndrome¹, and a variety of congenital malformation syndromes including Velocardiofacial syndrome (VCFS)2, share the deletion of chromosome 22 at 22q11.2^{2,3,4,5}. These chromosome 22 deletions are collectively coined CATCH22, a mnemonic that covers the clinical findings of Cardiac abnormality, Abnormal facies, Thymic aplasia, Cleft palate and Hypocalaemia/Hyperthyroidism due to a chromosome 22 deletion. In DiGeorge syndrome, however, cases have also been found in which patients have a deletion on chromosome 10p13.4 (DGS2) instead of chromosome 22.6,7,8. The deletion of the DGS2 locus on 10p may be 50 times less frequent than that of the DGS1 locus on 22q and has been estimated to occur in 1 in 200,000 live births8. A gene called BRUNOL3 (now named CELF2) has been identified within the 300kb minimally deleted region of DGS2 and is postulated to be involved in the DGS2 deletion 10. BRUNOL3 is a candidate gene for the heart defect and thymus hypoplasia/aplasia associated with partial monosomy 10p¹⁰ and may be involved in atrial septal defects (ASDs), a common cardiac anomaly associated with DGS211.

Items for today

- Test sequenziale «reflex» Test combinato + DNA fetale
- La integrazione NT e NIPT
- Confronto delle performance dello screening della Sindrome di DiGeorge
- I pannelli per le malattie mendeliane

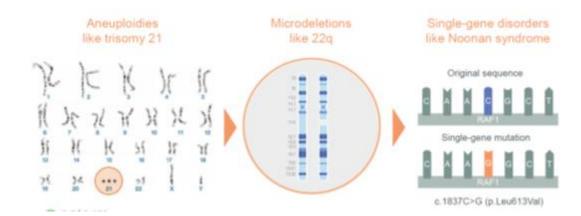
Evoluzione del NIPT: Verso le malattie mendeliane

Single Gene Mutations
NOT Detected by Routine Karyotype or Microarray

Karyotype

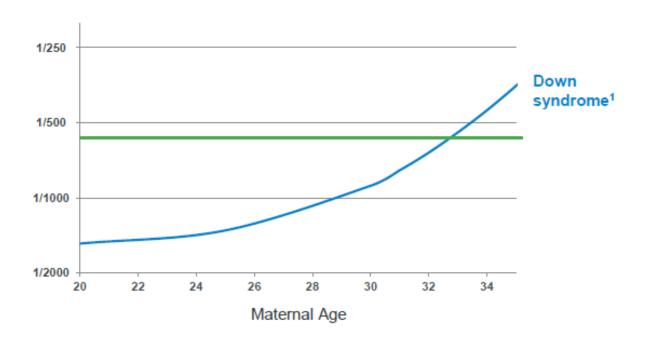
>7Mb Resolution

Can detect whole chromosome aneuploidy, large deletions and duplications



Microarray

>1Mb genome resolution, even smaller for critical regions


Can detect microdeletions and microduplications

Screening Malattie Mendeliane Dominanti de novo

Consider Vistara for the following indications:

Advanced paternal age

Women who want to know "more"

Ultrasound anomalies, such as shortened long bones and increased NT

Adjunct to CVS and amniocentesis

Compagnie che offrono Pannelli per le malattie mendeliane

- Genoma Roma (Italy) Genesafe
 - Dominanti e alcune Recessive
- Natera (USA) Vistara
 - Dominanti
- Ames Group (Italy) VeraOmnia
 - Dominanti e Recessive
- NIPT Genetics (Cipro)
 - Recessive VeraGene
 - Dominanti (in progress) VeraOmics

Conditions screened

Syndromic Disorders	
Condition	Gene
Alagille Syndrome	JAG1
CHARGE syndrome	CHD7
Cornelia de Lange syndrome 1	NIPBL
Cornelia de Lange syndrome 2	SMC1A
Cornelia de Lange syndrome 3	SMC3
Cornelia de Lange syndrome 4	RAD21
Cornelia de Lange syndrome 5	HDAC8
Epileptic encephalopathy, early infantile, 2	CDKL5
Intellectual disability	SYNGAP1
Rett syndrome	MECP2
Sotos syndrome 1	NSD1
Tuberous sclerosis 1	TSC1
Tuberous sclerosis 2	TSC2

Craniosynostosis Syndromes	
Condition	Gene
Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis	
Apert syndrome	FGFR2
Crouzon syndrome	
Jackson-Weiss syndrome	
Pfeiffer syndrome type 1/2/3	

Skeletal Disorders	
Condition	Gene
Achondroplasia	
CATSHL syndrome	
Crouzon syndrome with acanthosis nigricans	FGFR2
Hypochondroplasia	
Muenke syndrome	
Thanatophoric dysplasia, type I	
Thanatophoric dysplasia, type II	
Ehlers-Danlos syndrome, classic	
Ehlers-Danlos syndrome, type VIIA	
Osteogenesis imperfecta, type I	COL1A1
Osteogenesis imperfecta, type II	
Osteogenesis imperfecta, type III	
Osteogenesis imperfecta, type IV	
Ehlers-Danlos syndrome, cardiac valvular form	
Ehlers-Danlos syndrome, type VIIB	COL1A2
Osteogenesis imperfecta, type II	
Osteogenesis imperfecta, type III	
Osteogenesis imperfecta, type IV	

Noonan Spectrum Disorders	
Condition	Gene
Cardiofaciocutaneous syndrome 1	BRAF
Cardiofaciocutaneous syndrome 3	MAP2K1
Cardiofaciocutaneous syndrome 4	MAP2K2
Costello syndrome / Noonan syndrome	HRAS
Noonan syndrome 1 / LEOPARD syndrome/cancers	PTPN11
Noonan syndrome 4	SOS1
Noonan syndrome 5 / LEOPARD syndrome 2	RAF1
Noonan syndrome 6 / cancers	NRAS
Noonan syndrome 8	RIT1
Noonan syndrome 9	SOS2
Noonan syndrome/cancers	KRAS
Noonan syndrome-like disorder with loose anagen hair	SHOC2
Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia (NSLL)	CBL

Disorder	Clinical actions		
Osteogenesis imperfecta	 Labor and delivery management to avoid fractures Neonatal care Early recognition and treatment of fractures 		
Achondroplasia	 Labor and delivery management Monitor for spinal stenosis Early sleep studies to reduce probability of SIDS 		
Noonan syndrome	 Fetal echocardiogram Labor and delivery management Early assessment for learning differences 		
Craniosynostosis	 Fetal MRI Avoid instrumented delivery Corrective surgery Early medical and behavioral interventions 		

identifies fetal conditions that could be **missed by traditional prenatal screening.**

GENE	SYNDROMIC DISORDERS		
JAG1	Alagille syndrome		
CHD7	CHARGE syndrome		
HDAC8	Cornelia de Lange syndrome 5		
NIPBL	Cornelia de Lange syndrome 1		
MECP2	Rett syndrome		
NSD1	Sotos syndrome 1		
ASXL1	Bohring-Opitz syndrome		
SETBP1	Schinzel-Giedion syndrome		
SIX3	Holoprosencephaly		
NOONAN SYNDROMES			
BRAF	Cardiofaciocutaneous syndrome 1		
CBL	Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia (N\$LL)		
KRAS	Noonan syndrome/cancers		
MAP2K1	Cardiofaciocutaneous syndrome 3		
MAP2K2	Cardiofaciocutaneous syndrome 4		
NRAS	Noonan syndrome 6/cancers		
PTPN11	Noonan syndrome 1/ LEOPARD syndrome/cancers		
PTPN11	Juvenile myelomonacytic leukemia (JMML)		
RAF1	Noonan syndrome 5/LEOPARD syndrome 2		
RIT1	Noonan syndrome 8		
SHOC2	Noonan syndrome-like disorder with loose anagen hair		
5051	Noonan syndrome 4		

GENE	SKELETAL DISORDERS
COL2A1	Achondrogenesis, type II or hypochondrogenesis
	Achondroplasia
	CATSHL syndrome
	Crouzon syndrome with acanthosis nigricans
FGFR3	Hypochondroplasia
	Muenke syndrome
	Thanatophoric dysplasia, type I
	Thanatophoric dysplasia, type II
	Ehlers-Danlos syndrome, classic
	Ehlers-Danlos syndrome, type VIIA
001111	Osteogenesis imperfecta, type I
COLIAI	Osteogenesis imperfecta, type II
	Osteogenesis imperfecta, type III
	Osteogenesis imperfecta, type IV
	Ehlers-Danlos syndrome, cardiac valvular form
	Ehlers-Danlos syndrome, type VIIB
COL1A2	Osteogenesis imperfecta, type II
	Osteogenesis imperfecta, type III
	Osteogenesis imperfecta, type IV
	CRANIOSYNOSTOSIS SYNDROMES
	Antley-Bixler syndrome without genital anomalies or disor- dered steroidogenesis
	Apert syndrome
	Crouzon syndrome
FGFR2	Jackson-Weiss syndrome
	Pfeiffer syndrome type 1
	Pfeiffer syndrome type 2
	Pfeiffer syndrome type 3

GeneSafe detects de novo mutations in 25 genes causing 44 different genetic disorders. The genetic conditions screened by this innovative test often occur in the absence of a family history of the condition. This is a paradigm shift in prenatal screening. GeneSafe screens for de novo mutations that cannot be detected by standard carrier screening, as these mutations are not present on the parents. The genetic disorders screened by GeneSafe can cause skeletal dysplasias, cardiac defects, 12-3 multiple congenital anomalies, 4-5 autism, 6 epilepsy 7 and/or intellectual disability. 8-9

			/	
Sindrome di Costello	HRAS		Sindrome di Noonan	GENE
Sindrome di Tay-Sachs	HEXA		Sindrome Cardio facio cutanea (CFS) tipo 1	BRAF
Sindrome di PKAN	PANK2		Sindrome di Noonan - simile con o senza	CBL
Sindrome della Tripla-H	SLC25A1	_	leucemia mielomonocitica giovanile	
Sindrome di Coffin-Lowry	RPS6KA3	-	Sindrome di Noonan /cancers	KRAS
Sindrome di Alagille	JAG1	-	Sindrome Cardio facio cutanea (CFS) tipo e 3	MAP2K1
A I I OHIDOF	OF NE	_/	Sindrome Cardio facio cutanea (CFS) tipo 4	MAP2K2
Patologie scheletriche	GENE		Sindrome di Noonan 6/cancers	NRAS
Acondrogenosi tipo 2	COL2A1		Sindrome di Noonan 1/Sindrome di LEOPARD/cancers	PTPN I I
 Acondroplasia 			Leucemia mielomonocitica giovanile (JMML)	PTPN11
■ Sindrome CATSHL			Sindrome di Noonan 5/Sindrome di LEOPARD 2	RAF1
 Sindrome di Crouzon con acanthosis nigricans Ipocondroplasia 	FGFR3		Sindrome di Noonan 8	RIT 1
Sindrome di Muenke	TOIRS		Sindrome Noonan - simile con capelli caduchi	SHOC2
Displasia tanatafora, tipo I			in fase anagen	
Displasia tanatafora, tipo II			Sindrome di Noonan 4	SOS1
Sindrome di Ehlers - Danlos, classica			Craniosinostosi	GENE
Sindrome di Ehlers - Danlos, tipo VIIA Osteogenesi imperfetta, tipo I			Sindrome di Antley - Bixler senza	
Osteogenesi imperierra, ripo I	COLIAI	• 1	anomalie genitali o disordini della	
Osteogenesi imperfetta, tipo III			steroidognesi	
Osteogenesi imperfetta, tipo IV			Sindrome di Apert	
Sindrome di Ehlers – Danlos, forma		-	Sindrome di Crouzon	FGFR2
cardiaco - valvolare		: 1	Sindromedi Jackson - Weiss	
 Sindrome di Ehlers - Danlos, tipo VIIB Osteogenesi imperfetta, tipo II 	COL1A2	: 1	Sindrome di Pfeiffer, tipo 1	
Osteogenesi imperietta, ripo II Osteogenesi imperfetta, tipo III		: 1	Sindrome di Pfeiffer, tipo 2	
Osteogenesi imperfetta, tipo IV			Sindrome di Pfeiffer, tipo 3	

VERAomics

Table 2. List of conditions to be targeted on "VERAomics" test. AD, autosomal dominat; AR, autosomal recessive; XLD, X-linked dominant.

Condition	Gene	Mode of Inheritance
Achondroplasia	FGFR3	AD
Alagille syndrome	JAG1	AD
Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis	FGFR2	AD
Apert syndrome	FGFR2	AD
Cardiofaciocutaneous syndrome 1	BRAF	AD
Cardiofaciocutaneous syndrome 3	MAP2K1	AD
CATSHL syndrome	FGFR3	AD
CHARGE syndrome	CHD7	AD
Cornelia de Lange syndrome 1	NIPBL	AD
Cornelia de Lange syndrome 3	SMC3	AD
Cornelia de Lange syndrome 4	RAD21	AD
Costello syndrome/Noonan syndrome	HRAS	AD
Crouzon syndrome	FGFR2	AD
Crouzon syndrome with acanthosis nigricans	FGFR3	AD
Ehlers-Danlos syndrome, classic	COL1A1	AD
Ehlers-Danios syndrome, type VIIA	COL1A1	AD
Ehlers-Danios syndrome, type VIIB	COL1A2	AD
Hypochondroplasia	FGFR3	AD
Intellectual disability	SYNGAP1	AD
Jackson-Weiss syndrome	FGFR2	AD
Muenke syndrome	FGFR3	AD
Noonan syndrome	KRAS	AD
Noonan syndrome 1/LEOPARD syndrome	PTPN11	AD
Noonan syndrome 4	5051	AD
Noonan syndrome 5/LEOPARD syndrome 2	RAF1	AD
Noonan syndrome 6/cancers	NRAS	AD
Noonan syndrome 8	RIT1	AD
Noonan syndrome 9	SOS2	AD
Noonan syndrome-like disorder with loose anagen hair	SHOC2	AD
Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia (NSLL)	CBL	AD
Osteogenesis imperfecta, type I	COL1A1	AD
Osteogenesis imperfecta, type II	COL1A1	AD
Osteogenesis imperfecta, type II	COL1A2	AD
Osteogenesis imperfecta, type III	COL1A1	AD
Osteogenesis imperfecta, type III	COL1A2	AD
Osteogenesis imperfecta, type IV	COL1A1	AD
Osteogenesis imperfecta, type IV	COL1A2	AD
Pfeiffer syndrome type 1/2/3	FGFR2	AD
Sotos syndrome 1	NSD1	AD
Thanatophoric dysplasia, type I	FGFR3	AD
Thanatophoric dysplasia, type II	FGFR3	AD
Tuberous sclerosis 1	TSC1	AD
Tuberous sclerosis 2	TSC2	AD

Pannelli per le malattie Mendeliane recessive

GENE	GENETIC DISORDER	
CFTR	Cystic Fibrosis	
CX26 (GJB2)	Deafness autosomal recessive type 1A	
CX30 (GJB6)	Deafness autosomal recessive type 1B	
НВВ	Thalassemia-Beta	
НВВ	Sickle cell anemia	

Malattie ad elevata incidenza rilevate

con Vera Omnia®	GENE
 Fibrosi Cistica Sordità ereditaria tipo 1 A Sordità ereditaria tipo 1 B Beta Talassemia Anemia falciforme Fenilchetonuria 	CFTR CX26 (GJB2) CX30 (GJB6) HBB HBB PAH
Malattie a bassa incidenza e/o ad insorgenza DE NOVO	GENE

insorgenza DE NOVO	
Malattie Sindromiche	GENE
Sindrome di Gaucher	GBA
Sindrome Dubowitz	LIG4-NSUN2
Sindrome di Richner-Hanhart	TAT
Sindrome di Sjögren-Larsson	ALDH3A2

VERA Sene comprehensive NIPT

Table 1. Summary of the 50 monogenic disorders targeted on VERAgene.

Condition	Gene	# of mutations targeted
Abetalipoproteinemia	МТТР	1
Arthrogryposis, mental retardation seizures	SLC35A3	1
Autosomal recessive polycystic kidney disease	PKHD1	30
Bardet Biedl syndrome 12	BBS12	4
Beta thalassemia	HBB	88
Canavan disease	ASPA	4
Choreacanthocytosis	VPS13A	1
Crigler Najjar syndrome, Type I	UGT1A1	10
Cystic fibrosis	CFTR	122
Factor V Leiden thrombophilia	F5	1
Factor XI deficiency	F11	4
Familial dysautonomia	IKBKAP	3
Familial Mediterranean fever	MEFV	8
Fanconi anemia (FANCG-related)	FANCG	3
Glycine encephalopathy (GLDC-related)	GLDC	2
Glycogen storage disease, Type 3	AGL	14
Glycogen storage disease, Type 7	PFKM	3
GRACILE syndrome	BCS1L	12
Inclusion body myopathy, type 2	GNE	2
Isovaleric acidemia	IVD	1
Joubert syndrome, type 2	TMEM216	2
Junctional epidermolysis bullosa, Herlitz type	LAMC2	1
Leber congenital amaurosis (LCA5-related)	LCA5	3
Leydig cell hypoplasia [Luteinizing hormone resistance]	LHCGR	10
Limb girdle muscular dystrophy, type 2E	SGCB	6
Lipoamide dehydrogenase deficiency [Maple syrup urine disease, type 3]	DLD	7
Lipoprotein lipase deficiency	LPL	1
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency	HADHA	2
Maple syrup urine disease, type 1B	BCKDHB	5

https://www.nipd.com/veragene/

Panelli avanzati mendeliani

- Mancanza di informazioni chiare sulle performance
- Mancanza di indicazioni cliniche specifiche
- Forse la prima proposta : Malattie recessive in genitori carrier e/o in aree geografiche a rischio aumentato
- Panelli per malattie dominanti de novo prima dell'ecografia del 2 trimestre

Conclusioni

- Quadro in rapida evoluzione
- Competenza di genetica clinica e molecolare
- Alta aspettativa delle pazienti (spesso inaccettabile la performance del test combinato)
- Offerta «privata» deve essere «provata» da pubblicazioni su casistiche prospettiche
- La diagnosi invasiva del futuro ha un nuovo ruolo molto più mirato e di alta competenza